1.概述
人們在實踐中早已總結(jié)出不同顏色的物質(zhì)具有不同的物理和化學性質(zhì)。根據(jù)物質(zhì)的這些特性可對它進行有效的分析和判別。由于顏色本就惹人注意,根據(jù)物質(zhì)的顏色深淺程度來對物質(zhì)的含量進行估計,可追溯到古代及中世紀。1852年,比爾(Beer)參考了布給爾(Bouguer)1729年和朗伯(Lambert)在1760年所發(fā)表的文章,提出了分光光度的基本定律,即液層厚度相等時,顏色的強度與呈色溶液的濃度成比例,從而奠定了分光光度法的理論基礎,這就是著名的比爾朗伯定律。1854年,杜包斯克(Duboscq)和奈斯勒(Nessler)等人將此理論應用于定量分析化學領域,并且設計了第一臺比色計。到1918年,美國國家標準局制成了第一臺紫外可見分光光度計。此后,紫外可見分光光度計經(jīng)不斷改進,又出現(xiàn)自動記錄、自動打印、數(shù)字顯示、微機控制等各種類型的儀器,使光度法的靈敏度和準確度也不斷 提高,其應用范圍也不斷擴大。
紫外可見分光光度法從問世以來,在應用方面有了很大的發(fā)展,尤其是在相關學科發(fā)展的基礎上,促使分光光度計儀器的不斷創(chuàng)新,功能更加齊全,使得光度法的應用更拓寬了范圍。目前,分光光度法已為工農(nóng)業(yè)各個部門和科學研究的各個領域所廣泛采用,成為人們從事生產(chǎn)和科研的有力測試手段。我國在分析化學領域有著堅實的基礎,在分光光度分析方法和儀 器的制造方面國際上都已達到一定的水平[1][2]
2.原理
物質(zhì)的吸收光譜本質(zhì)上就是物質(zhì)中的分子和原子吸收了入射光中的某些特定波長的光能量,相應地發(fā)生了分子振動能級躍遷和電子能級躍遷的結(jié)果。由于各種物質(zhì)具有各自不同的分子、原子和不同的分子空間結(jié)構(gòu),其吸收光能量的情況也就不會相同,因此,每種物質(zhì)就有其特有的、固定的吸收光譜曲線,可根據(jù)吸收光譜上的某些特征波長處的吸光度的高低判別或 測定該物質(zhì)的含量,這就是分光光度定性和定量分析的基礎。分光光度分析就是根據(jù)物質(zhì)的吸收光譜研究物質(zhì)的成分、結(jié)構(gòu)和物質(zhì)間相互作用的有效手段。
紫外可見分光光度法的定量分析基礎是朗伯-比爾(Lambert-Beer)定律。即物質(zhì)在一定濃度的吸光度與它的吸收介質(zhì)的厚度呈正比,其數(shù)學表示式如下:
A= 錬c
式中:A—吸光度(又稱光密度、消光值),
?—摩爾吸光系數(shù)(其物理意義為:當吸光物質(zhì)濃度為1摩爾/升,吸收池厚為1厘米,以一定波長原光通過時,所引起的吸光值A),b—吸收介質(zhì)的厚度(厘米),c—吸光物質(zhì)的 濃度(摩爾/升)。
物質(zhì)的顏色和它的電子結(jié)構(gòu)有密切的關系,當輻射(光子)引起電子躍遷使分子(或離子)從基態(tài)上升到激發(fā)態(tài)時,分子(或離子)就會在可見區(qū)或紫外呈現(xiàn)吸光,顏色的發(fā)生或變化是和分子的正常電子結(jié)構(gòu)的變形聯(lián)系的。當分子中含有一個或更多的生色基因(即具有不飽和鍵的原子基團),輻射就會引起分子中電子能量的改變。常見的生色團有:
CO, -N=N-, -N=O,-C N,CS
如果兩個生色團之間隔一個碳原子,則形成共軛基團,會使吸收帶移向較長的波長處(即紅移),且吸收帶的強度顯著增加。當分子中含有助色基團(有未共用電子對的基團)時,也會 產(chǎn)生紅移效應。常見的助色基團有:-OH -NH2,-SH, -Cl, -Br, -I
3.特點
分光光度法對于分析人員來說,可以說是最有用的工具之一。幾乎每一個分析實驗室都離不開紫外可見分光光度計。分光光度法的主要特點為:
(1)應用廣泛
由于各種各樣的無機物和有機物在紫外可見區(qū)都有吸收,因此均可借此法加以測定。到目前為止,幾乎化學元素周期表上的所有元素(除少數(shù)放射性元素和惰性元素之外)均可采用此法。在國際上發(fā)表的有關分析的論文總數(shù)中,光度法約占28%,我國約占所發(fā)表論文總數(shù)的33% 。
(2)靈敏度高
由于新的顯色劑的大量合成,并在應用研究方面取得了可喜的進展,使得對元素測定的靈敏度有所推進,特別是有關多元絡合物和各種表面活性劑的應用研究,使許多元素的摩爾吸光 系數(shù)由原來的幾萬提高到數(shù)十萬。
(3)選擇性好
目前已有些元素只要利用控制適當?shù)娘@色條件就可直接進行光度法測定,如鈷、鈾、鎳、銅、銀、鐵等元素的測定,已有比較滿意的方法了。
(4)準確度高
對于一般的分光光度法,其濃度測量的相對誤差在1~3%范圍內(nèi),如采用示差分光光度法進行測量,則誤差可減少到0.X%。
(5) 適用濃度范圍廣
可從常量(1%~50%)(尤其使用示差法)到痕量(10-8~10-6%)(經(jīng)預富集后)。
(6) 分析成本低、操作簡便、快速
由于分光光度法具有以上優(yōu)點,因此目前仍廣泛地應用于化工、冶金、地質(zhì)、醫(yī)學、食品、制藥等部門及環(huán)境監(jiān)測系統(tǒng)。單在水質(zhì)分析中的應用就很廣,目前能有直接法和間接法測定 的金屬和非金屬元素就有70多種。
4 應用
4.1 檢定物質(zhì)
根據(jù)吸收光譜圖上的一些特征吸收,特別是最大吸收波長雖ax和摩爾吸收系數(shù)澹是檢定物質(zhì)的常用物理參數(shù)。這在藥物分析上就有著很廣泛的應用。在國內(nèi)外的藥典中,已將眾多的藥物紫外吸收光譜的最大吸收波長和吸收系數(shù)載入其中,為藥物分析提供了很好的 手段。
4.2 與標準物及標準圖譜對照
將分析樣品和標準樣品以相同濃度配制在同一溶劑中,在同一條件下分別測定紫外可見吸收光譜。若兩者是同一物質(zhì),則兩者的光譜圖應完全一致。如果沒有標樣,也可以和現(xiàn)成的標 準譜圖對照進行比較。這種方法要求儀器準確,精密度高,且測定條件要相同。
4.3 比較最大吸收波長吸收系數(shù)的一致性
由于紫外吸收光譜只含有2~3個較寬的吸收帶,而紫外光譜主要是分子內(nèi)的發(fā)色團在紫外區(qū)產(chǎn)生的吸收,與分子和其它部分關系不大。具有相同發(fā)色團的不同分子結(jié)構(gòu),在較大分子中不影響發(fā)色團的紫外吸收光譜,不同的分子結(jié)構(gòu)有可能有相同的紫外吸收光譜,但它們的吸收系數(shù)是有差別的。如果分析樣品和標準樣品的吸收波長相同,吸收系數(shù)也相同,則可認為 分析樣品與標準樣品為同一物質(zhì)。
例1 己二烯-1,5(CH2=CHCH2CH2=CH2)的最大吸收波長雖ax為178nm(摩爾吸收系數(shù)為26000),而己烯-1(CH2=CHCH2CH2CH2CH3)的最大吸收波長為雖ax為177nm(摩爾吸收系數(shù)邐11800)。此兩個物質(zhì)有相同的發(fā)色團,雖ax值基本相同,但值不同,二烯的逯當鵲ハ┑拇?。震~得饔邢嗤牡舜瞬還查畹姆⑸牛湮詹ǔそ詠于單個發(fā)色團的值,但逯翟蛩嫦嗤⑸攀康腦黽傭黽?。染J屑父齜⑸瘧舜斯查,則吸收長向紅移動。象丁二烯-1,3(CH2=CHCH=CH2)與己二烯-1,5(CH2=CHCH2CH2CH=CH2)相比,同樣有兩個雙鍵,但丁二烯-1,3中為共軛體系,它的最大吸收長雖ax為210nm,而摩爾吸收系數(shù)逯翟蠐爰憾-1,5基本一樣。
4.4 純度檢驗
例2 紫外吸收光譜能測定化合物中含有微量的具有紫外吸收的雜質(zhì)。如果化合物的紫外可見光區(qū)沒有明顯的吸收峰,而它的雜質(zhì)在紫外區(qū)內(nèi)有較強的吸收峰,就可以檢測出化合物中 的雜質(zhì)。